中教数据库 > 南京大学学报(自然科学) > 文章详情

基于贝叶斯-遗传算法的多值无环CP-nets学习

更新时间:2023-05-28

【摘要】条件偏好网(Conditional Preference networks,CP-nets)是描述属性间条件偏好的图模型,多值无环CP-nets学习是重要的研究方向之一.区别于传统的CP-nets学习方法,提出基于贝叶斯方法和遗传算法的多值无环CP-nets学习.在偏好处理上以多值属性的完整偏序关系作为条件偏好,进行相关性关系判定.随后,基于贝叶斯方法,以单一父属性推出多父属性下的相关性关系,进行CP-nets结构学习.采用遗传算法在CP-nets结构搜索空间中进行搜索,求解最优结构.通过Delink算法进行去环,完成无环CP-nets学习.在寿司数据集上验证算法的有效性,实验结果表明,基于贝叶斯-遗传算法的CP-nets学习算法能够在有限时间内学习得到局部最优无环CP-nets.

【关键词】

242 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号