中教数据库 > 南京大学学报(自然科学) > 文章详情

AdaBoost图像到类距离学习的图像分类方法

更新时间:2023-05-28

【摘要】近年来,距离度量学习已经成为图像分类领域的研究热点之一,图像到类距离的度量作为其中的一种方法,取得了不错的分类效果.该方法是一种非参数方法,但由于缺少训练学习,其分类性能很容易受干扰因素的影响,为此提出一种基于AdaBoost算法的图像到类距离学习的图像分类方法 .首先将图像到类的距离进行阈值化处理,并使用线性分段函数作为图像到类距离的评价函数,然后将该评价函数作为弱分类器加入到AdaBoost算法中生成一个强分类器.为了选择最优的弱分类器,使用粒子群优化算法确定图像的相似性阈值,再基于权重错误误差最小化原则得到距离评价函数的两个评价值.最后通过实验验证,该方法在Scene-15和Caltech-101图像数据集上比其他方法有更好的分类效果.

【关键词】

2665 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号