中教数据库 > 南京大学学报(自然科学) > 文章详情

半监督平面聚类算法设计

更新时间:2023-05-28

【摘要】采用以平面为原型来拟合样本的思想设计学习机,已在机器学习和数据挖掘等领域引起广泛关注,然而,如何利用少量标记样本,兼顾平面原型特点实现聚类,鲜见报道.以kPC(k-Plane Clustering)为切入点,在有标样本极端少的情况下,设计了半监督型平面聚类算法semi-kPC.考虑到L1范数较L2范数更为鲁棒的事实,在已有工作L1kPC(L1 norm kPC)的基础上,提出基于L1范数的半监督聚类方法 semi-L1kPC.从每类仅有一个已标样本出发,在人工数据集和UCI数据集上的实验表明:(1)在XOR(Exclusive OR)问题上,平面型的聚类方法的聚类准确率均显著高于k-means算法,因为k-means无法利用平面特性;(2)在引入少量监督信息后,半监督型聚类方法 semi-kPC和semi-L1kPC比其他聚类方法的聚类准确率更高;(3)采用L1范数的semi-L1kPC比semi-kPC的鲁棒性更好.

【关键词】

10 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号